The Biosynthetic Pathway of Indole-3-Carbaldehyde and Indole-3-Carboxylic Acid Derivatives in Arabidopsis.
نویسندگان
چکیده
Indolic secondary metabolites play an important role in pathogen defense in cruciferous plants. In Arabidopsis (Arabidopsis thaliana), in addition to the characteristic phytoalexin camalexin, derivatives of indole-3-carbaldehyde (ICHO) and indole-3-carboxylic acid (ICOOH) are synthesized from tryptophan via the intermediates indole-3-acetaldoxime and indole-3-acetonitrile. Based on feeding experiments combined with nontargeted metabolite profiling, their composition in nontreated and silver nitrate (AgNO3)-treated leaf tissue was comprehensively analyzed. As major derivatives, glucose conjugates of 5-hydroxyindole-3-carbaldehyde, ICOOH, and 6-hydroxyindole-3-carboxylic acid were identified. Quantification of ICHO and ICOOH derivative pools after glucosidase treatment revealed that, in response to AgNO3 treatment, their total accumulation level was similar to that of camalexin. ARABIDOPSIS ALDEHYDE OXIDASE1 (AAO1), initially discussed to be involved in the biosynthesis of indole-3-acetic acid, and Cytochrome P450 (CYP) 71B6 were found to be transcriptionally coexpressed with camalexin biosynthetic genes. CYP71B6 was expressed in Saccharomyces cerevisiae and shown to efficiently convert indole-3-acetonitrile into ICHO and ICOOH, thereby releasing cyanide. To evaluate the role of both enzymes in the biosynthesis of ICHO and ICOOH derivatives, knockout and overexpression lines for CYP71B6 and AAO1 were established and analyzed for indolic metabolites. The observed metabolic phenotypes suggest that AAO1 functions in the oxidation of ICHO to ICOOH in both nontreated and AgNO3-treated leaves, whereas CYP71B6 is relevant for ICOOH derivative biosynthesis specifically after induction. In summary, a model for the biosynthesis of ICHO and ICOOH derivatives is presented.
منابع مشابه
The Biosynthetic Pathway of Indole-3-Carbaldehyde and Indole-3-Carboxylic Acid Derivatives in Arabidopsis1[W]
Indolic secondary metabolites play an important role in pathogen defense in cruciferous plants. In Arabidopsis (Arabidopsis thaliana), in addition to the characteristic phytoalexin camalexin, derivatives of indole-3-carbaldehyde (ICHO) and indole-3carboxylic acid (ICOOH) are synthesized from tryptophan via the intermediates indole-3-acetaldoxime and indole-3-acetonitrile. Based on feeding exper...
متن کاملThe multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.
Accumulation of camalexin, the characteristic phytoalexin of Arabidopsis thaliana, is induced by a great variety of plant pathogens. It is derived from Trp, which is converted to indole-3-acetonitrile (IAN) by successive action of the cytochrome P450 enzymes CYP79B2/B3 and CYP71A13. Extracts from wild-type plants and camalexin biosynthetic mutants, treated with silver nitrate or inoculated with...
متن کاملUniversally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves.
A total of eleven alkali-released, aromatic compounds were identified by HPLC, MS and NMR analyses in cell wall extracts from Arabidopsis thaliana roots. Nine of them together constituted the three complete series of 4-hydroxy-, 4-hydroxy-3-methoxy, and 4-hydroxy-3,5-dimethoxy-substituted benzaldehydes, benzoic acids and cinnamic acids. The other two were indolic metabolites: indole-3-carboxyli...
متن کاملRegulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.
Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inocu...
متن کاملSimple Syntheses of 3-Substituted Indoles and their Application for High Yield 14C-Labelling
3-Substituted Indoles, Indole Alkaloids, UV Spectra, MS Spectra, 1H NMR spectra Methods are described which allow the synthesis of several plant indole alkaloids and their metabolites at different scales. Compounds synthesized include gramine (1) (3-dimethylaminomethylindole) which is directly derived from indole, while its biosynthetic precursors 3-aminomethylindole (3) and 3-methylaminomethyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 165 2 شماره
صفحات -
تاریخ انتشار 2014